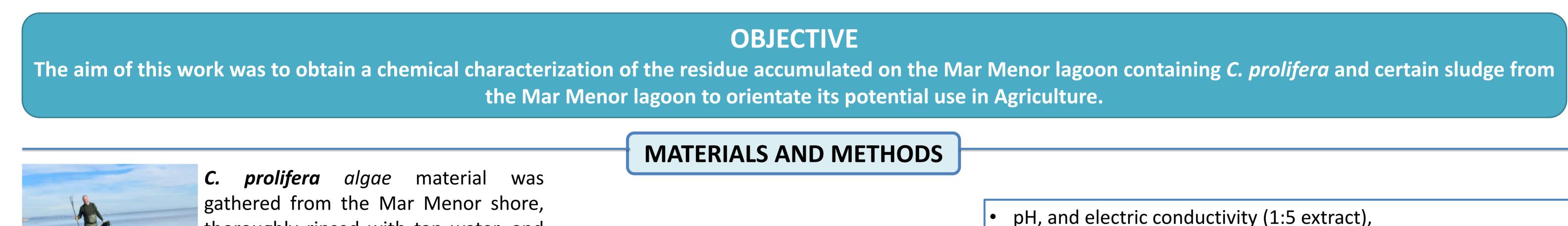
Composition of seaweed from the shores of Mar Menor Lagoon with potential use in Agriculture

Sandra López-Rayo¹, Karen J. De la Fuente¹, <u>Begoña Mayans¹</u>, Teresa Fresno¹, Enrique Eymar¹, Carlos García-Delgado²

Universidad Autónoma de Madrid

¹Department of Agricultural Chemistry and Food Science, Faculty of Sciences, University Autónoma of Madrid, 28049-Madrid, Spain^{*} begonna.mayans@uam.es ²Department of Geology and Geochemistry, Faculty of Sciences, University Autónoma of Madrid, 28049-Madrid, Spain

INTRODUCTION


The Mar Menor lagoon, located in a semi-arid area (Murcian coast), is one of the largest hypersaline coastal lagoons of Spain. In the last years, the green alga *Caulerpa prolifera* has colonized the lagoon's muddy bottom spreading not only in the shallow water sandy areas with no other living organisms but also in other regions' habitats of marine plants such as *Cymodocea nodosa*, a phanerogam that grew in almost the whole Mar Menor basin and now is being displaced to only a few areas because of the wide explosion of the alga. The algae growth has increased reaching in August 2020 volumes approx. 60 tons of biomass (algae and phanerogam) that had to be removed and disposed of as waste with a significant economic cost and environmental impact.

In addition to the actions being taken to reduce pollution in the area, such as restricting the use of synthetic fertilizers and, in particular, nitrates, efforts are being made to explore potential uses for this waste in various sectors, including agriculture and energy production. The first step is the characterization of this material, which is fundamental to lead its subsequent application.

ALGARIKON is a coordinated Spanish project focused on the Valorisation of the algae accumulated on Mar Menor shores as a result of its eutrophication.

The work presented here is a part devoted to the transformation of the algae residues to Biostimulants for plants, developed by the UAM group.

RESULTS

The percentage of humidity and total chlorophyll content were determined in the fresh waste

It was freeze-dried , sifted to 4 mm to eliminate fine impurities, and milled.

CNHS elemental analysis,

- Nitrates concentration (UNE-EN 10304-1),
- Organic matter by calcination method
- Ionomic analysis by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES, iCAP-PRO XDuo Spectrometer, Thermo Scientific, UK).
- Other bioactive compound: concentration of hormones (Albacete et al. 2008), organic acids, and amino acids.
- Carbon concentration by FT-IR and CP-MAS ¹³C-NMR.

The spectroscopic characterization of the organic carbon by FT-IR showed a major fraction related to carbohydrates and an appreciable amount of aliphatic and aromatic structures and possible N-H groups.

The semi-quantitative analysis by ¹³C-NMR showed 48% of O-alkyl groups, 12% of di-O-alkyl groups, 23% of aliphatic-C, 11% carboxyl-C, and 5% aromatic-C

Table 1. Chemical properties and ionomic analysis of C. prolifera waste on lyophilized material

Properties	Value	Properties	Value
%C	37.4	Micronutrient	t concentration (mg/Kg)
%H	5.1	Fe	2330
%N	4.0	Mn	3010
%S	1.6	Zn	63.37
m.o. (%)	73.9	Cu	6.52
NO ₃ ⁻ (mg N/Kg)	61	В	
pH (1:5)	6.51	Мо	1.04
Conductivity (mS/cm) (1:5)	21.0	Na	23553
Humidity (%)	77.8 ± 0.7	Cl	5703
Total chlorophyll (g/Kg)	2.33 ± 0.39	Other elemen	ts concentration (mg/Kg)
Other Macronutrient concentracion (g/Kg)		Al	3490
Р	0.41	As	14.6
К	7.64	Br	374
Mg	6.98	Ι	280
Са	38.77	Pb	82

Table 2. Concentration of hormones, organic acids, and aminoacids in *C. prolifera* waste on lyophilized material

Hormones	Value (µg/Kg)	Organic acids	Value (mg/Kg)
Ethylene precursor		Malic	1.75
ACC	56.7	Succinic	29.4
Cytokinins		Citric	9.95
tZ	1412	Fumaric	0.982
ZR	0.888		
iP	16.9	Aminoacids	Value (mg/Kg)
Gibberellins		Aspartate	0.320
GA1	38.1	Glutamine	0.481
GA3	107	L-Citrulline	0.360
		Trans-4-Hydroxy-L-	
GA4	247	Proline	0.688
Auxins		Proline	4.177
ΙΑΑ	14.5	Glutamate	9.618
OxIAA	69.0	Valine	1.111
PAA	374	Phenylalanine	1.139
Mel	NF	Tryptophan	0.256
Stress hormones		Iso/Leucine	0.309
ABA	265		
SA	152		
JA	3669		

C. prolifera shows a significant concentration of nitrate, Fe, and Mn.

A significantly high concentration of some hormones was obtained, indicating the high potential of the waste to be used as biostimulant.

CONCLUSIONS

Chemical composition of the waste of *C. prolifera* from the Mar Menor shores presents a broad array of active and nutritional compounds, including Fe, Ca, N, as well as certain hormones, amino acids, and organic acids, indicating that it may have potential use in agriculture, particularly as a fertilizer and biostimulant.

Financiado por la Unión Europea NextGenerationEU

FUNDING & ACKNOWLEDGEMENTS

Financial support has been provided by the Spanish Project TED2021-129591B-C32 from Ministerio de Ciencia e Innovación, by the Agencia Estatal de Investigación and the Next Generation funds.

11th International Conference on Sustainable Solid Waste Management Rhodes, Greece, 19 – 22 JUNE 2024