ELECTROCHEMICAL TECHNOLOGY AS A REMEDIATION STRATEGY FOR EMERGING **ORGANIC CONTAMINANTS IN EFFLUENT-IRRIGATED SOIL**

P. Guedes¹, A. R. Ferreira², V. Correia¹, E. P. Mateus¹, A. B. Ribeiro¹, N. Couto¹

1 CENSE - Center for Environmental and Sustainability Research & CHANGE - Global Change and Sustainability Institute, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal

2 DTU, Technical University of Denmark, Department of Environmental and Resource Engineering Water Technology & Processes, Miljøvej 115, 2800 Kgs. Lyngby, Denmark

*p.guedes@fct.unl.pt; epm@fct.unl.pt

OBJECTIVE 2

The problem

BACKGROUND

Water scarcity affects one in three people on every continent of the globe.

Only 3% of the total water covering earth is freshwater.

of freshwater use is in agriculture

Assess the potential of Electrokinetic (EK) remediation as a costefficient and non-invasive technique for environmental risk mitigation when wastewater is used for irrigation.

The solution

Reclaimed wastewater use for irrigation is a reliable water supply independent of seasonal drought and weather variability and can cover peaks of water demand.

The problem behind the solution

00 extensively characterised	Wastewater	can	be	а	source	of
	contamination	า	Emer	ging	org	janic
	contaminants	-	pharr	nace	uticals	and
10000 fairly well characterised	personal care	e proc	lucts (Ps) - are	e not
	plants.	u Dy	wasu	evval	ei tieati	nem
20000 limited characterisation	The advarce of	offoot	e of th	000	ontomin	ante

Source: European Environment Agency 2020

The adverse effects of these containing its on human health and agroecosystems are still being studied.

Number of chemicals characterised for their hazards and exposures

N RESULTS

70000 poor characterisation

Study objects

Soil Rice culture

(silty clay, Table 1)

RWW Municipal wastewater (Table 2)

PPCPs

Sulfamethoxazole (SFM) Diclofenac (DCF) Ibuprofen (IBF) Carbamazepine (CBMP) Ethinylestradiol (EE2) Oxybenzophenone (MBPh)

EK conditions

EK stationary cell (Figure 1)

Current strategies applied Continuous current (CC) •On/Off period •Polarization reversal (REP) •On/Off + REP

Figure 1. Schematic representation of EK system used.

Parameters monitored: PPCPs degradation and mobilization, pH, conductivity, moisture content, voltage drop.

EK improved the removal of EOCs by up to 30% when compared to **natural attenuation** (Figure 2).

Table 1 – Soil characterisation (sampled at a rice field located at Paul de Magos, Salvaterra de Magos, Portugal, at 0–20 cm depth, corresponds to a Fluvisol -World Reference Base for Soil).

Soil parameters	Value
Sand (%)	19.7
Silt (%)	26.9
Clay (%)	53.4
pH _(H2O)	6.23
Conductivity (mS cm ⁻¹)	0.28
Total carbon (g kg ⁻¹)	24.6
Organic content (g kg ⁻¹)	42.4
Cation exchange capacity (cmol ₍₊₎ kg ⁻¹)	22.7
Exchangable cations (cmol ₍₊₎ kg ⁻¹)	
Ca ²⁺	11.3
Mg ²⁺	5.7
K+	0.5
Na ⁺	1.2
Sum of exchangable cations (cmol. kg^{-1})	18 7

Table 2 – Effluent characterisation (Collected after the secondary settler in a WWTP located in Quinta do Conde, Sesimbra, Portugal).

Color	Pale yellow
Odor	Very weak
рН	8.02 ± 0.03
Conductivity (mS cm ⁻¹)	1.18 ± 0.08
Total phosphorus - P (mg L ⁻¹)	1.67 ± 1.17
Total chloride - Cl ⁻ (mg L ⁻¹)	< 0.10
Total suspended solids - TSS (mg L ⁻¹)	< 10 - 30
Chemical oxygen demand - COD (mg O ₂ L ⁻¹)	52.50 ± 31.82
5-day biochemical oxygen demand - BOD ₅ (mg O ₂ L ⁻¹)	< 3 - 18

- Sulfamethoxazole (SFM) showed the highest remediation rate (75 -83%) when EK was applied, with around 57% of the removal estimated to be due to enhanced bioremediation.
- Ibuprofen (IBF) and diclofenac (DCF) removals were highly dependent on the directionality of the current.

Figure 2. Percentage of each EOC remaining in the soil after natural attenuation and after applying EK with different current strategies: continuous, switching On/Off, reversed polarity,

ONCLUSIONS 5 **C**(

The combination of **On/Off periods with reversed polarity** was found to be the **most suitable strategy** as it did not change the soil characteristics in terms of pH and resulted in a more homogenous removal of the studied PPCPs in the soil for the tested conditions.

The removals were dependent of site (anode, central and cathode) and PPCPs characteristics.

Acknowledgements

This work has received funding from project TARGET (S1/2.5/F0041), co-financed by the European Regional Development Fund (FEDER); and Fundação para a Ciência e a Tecnologia, I.P., Portugal, UIDB/04085/2020 (Research unit CENSE "Center for Environmental and Sustainability Research"); Fundação para a Ciência e a Tecnologia is also acknowledged for P. Guedes (CEECIND/01969/2020) and N. Couto (CEECIND/04210/2017) contracts established under Individual Call to Scientific Employment Stimulus. This research is anchored at RESOLUTION LAB, an infrastructure at NOVA School of Science and Technology.

Ferreira et al., 2020

