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Hyperspectral imaging and datasets preparation

Fig. 1. a) Geographical location of the Taranto area (Apulia Region). 
b) The green dashed circles identify the shipyards and dockyards of 

the Italian Navy in the Mar Grande and Mar Piccolo (Bay I) and of 
the Italian Air Force in the Mar Piccolo (Bay II) whilst the blue circle 
identifies the ex-Tosi shipyard area. c) SIN_07 - Taranto perimeter. 
Blue lines identify the limit of the marine area included in the SIN 

perimeter whilst red lines identify the limit of the in-land areas. 
Background images in a) and b) were exported from Google Earth 

and modified by the authors whilst SIN perimeter in c) was provided 
by the Italian Ministry of the Environment.

Fig. 2. a) Sampling sites in the Mar Piccolo Basin. b) Mussel farm facilities in 
the First Bay. c) Mussel farms in the Second Bay.

Fig. 3. HSI acquisition platform used to 
acquire the examined marine sediment 

samples.

In this study, an innovative methodological approach based on hyperspectral imaging (HSI), combined with machine learning approaches, is 
proposed to identify microplastics (MPs) in marine sediments collected in the Mar Piccolo basin (Gulf of Taranto, southern Italy) during a sampling 
campaign carried out in December 2022. The area of Taranto is characterized by the presence of high-density anthropogenic activities, including 
industrial districts, shipyards and arsenals, and intensive mussel aquaculture plants, which have led to relevant environmental modifications. The 
study area has been selected since, due to the high level of environmental risk, it is included in the Italian list of contaminated Sites of National 
Interest (SIN in Italian). Furthermore, this research represents the first attempt to monitor the MPs distribution in the investigated sites. The study area 
location is shown in Fig. 1. It is a semi-enclosed sheltered sea with very low water circulation and characterized by the presence of several submarine 
springs that recharge the basins with freshwater. 

Marine sediments sampling and grain-size analysis
Marine sediments were collected using a grab sampler 
installed on board a ship. Sampling sites (MP_01 – MP_08) 
were defined in both sub-basins of the Mar Piccolo (the 
First Bay and the Second Bay – Fig. 2a) accounting for the 
distribution of the mussel farm facilities (Fig. 2b, c), that 
obstructed the passage of the ship, and the mouth of the 
main rivers that flow in the basins (Galeso and Cervaro). 
Grain-size analyses were carried out at the laboratory of 
the Department of Earth and Geoenvironmental Sciences 
of University of Bari Aldo Moro (Italy) by following 
international standard procedures. For the sieving, a set 
of ASTM sieves was used. Before sieving, the sediment 
samples were firstly weighed and then dried in the oven at 
a temperature between 30 and 50° C for at least three 
consecutive days. The sand sediments from 2.0 mm to 
0.063 mm were sieved with the vibrating screen for a 
duration of 20 min. Grain-size analyses of the fraction <63 
μm were conducted by the use of Coulter counter that 
works on dispersing samples. Each retained fraction was 
weighed, and the results were processed with a specific 
application for Microsoft Excel (Gradistat© v8) to evaluate 
the main textural parameters.

Hyperspectral image acquisitions in the short-wave infrared (SWIR: 1000-2500 nm) range were performed at the Raw Materials Laboratory 
(RawMaLab) of the Department of Chemical Engineering, Materials & Environment (DICMA) of Sapienza University of Rome (Italy), using the 
SISUChema XL  Chemical Imaging Workstation (Specim Ltd., Oulu, Finland) (Fig. 3). The selected configuration uses a 31-mm lens with 50 mm 
field of view (FOV), a spatial resolution of 150 μm/pixel and a scanning speed of 17.35 mm/s. 

Fig. 4. Source images of the samples used to build the calibration and validation datasets of the classification model. a) Polymer waste flakes 
selected for the calibration (red) and validation datasets (green). b) Marine sediments without MPs selected for the calibration dataset. c) Marine 

sediments without MPs selected for the validation dataset.

Plastic waste flakes of 6 different polymers (Fig. 4a) and selected portions of marine sediment samples (Fig. 4b, 4c) collected from Mar Piccolo, 
subdivided in different size classes, were used as calibration (CAL) and validation (VAL) datasets to build and apply the classification model. The 
selected polymers are: polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS) and polyvinyl 
chloride (PVC). In addition, the considered 5 grain-size classes are: -4/+2.8mm, -2.8/+2mm, -2/+1.4mm, -1.4/+1mm, and -1mm/+710μm. Finally, 
the classification model was applied to the hyperspectral images of the real marine sediments from Mar Piccolo subdivided in the same 5 grain-
size classes and placed in monolayers of 5 cm strips (Fig. 5). 

Fig. 5. Source images of 
representative samples of real 

marine sediments from Mar 
Piccolo basin, used to evaluate 
the presence of MPs by applying 

the classification model.

(MP_05)

The sediments of the Mar Piccolo basin show a large variety of 
granulometric classes, being mainly composed of silt (ranging from very 
coarse to medium silt) and sand (from very fine to coarse sand). In fact, 
sample sediments are characterized by a range of mean size limited 
between 0,898 phi (coarse sand) and 6,588 phi (medium silt) (Fig.6). 

Hyperspectral data processing
Data processing was carried out by PLS_toolbox (Eigenvector Research, Inc.) running in MATLAB® (The Mathworks, Inc.). Different pre-processing 
algorithms were applied to data, highlighting the spectral differences of the 7 studied classes, (i.e., PA, PE, PET, PP, PS, PVC and Sediment) 
eliminating undesirable phenomena and reducing noise, such as light scattering. Principal Component Analysis (PCA) was applied to spectral 
data for exploratory purposes. Starting from the information obtained by PCA and given the complexity of the spectral data, a hierarchical 
classification approach (Hi-PLS-DA) was adopted based on 6 different PLS-DA (Rule 1, 2, 3, 4, 5 and 6), constituting a single classification model. 
Contiguous Block method was applied as cross-validation method for each rule.
The particles classified by Hi-PLS-DA as MPs were subsequently validated using Fourier-Transform Infrared spectroscopy with Attenuated Total 
Reflection (FTIR-ATR).
The performances of the Hi-PLS-DA model applied to the validation dataset were evaluated in terms of statistical parameters (pixel-based) in 
prediction, i.e., recall (or sensitivity in binary classification), and specificity (Eq. 1 and Eq. 2).
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Sediments characterization

Fig. 6. Mar Piccolo sediments characterization. The 
values of the main granulometric parameters (mean 

size and sorting) are indicated in the upper part of the 
figure and showed using the cumulative curves. Each 
color in the table and graph correspond to a specific 

sediment sample.

The average raw reflectance spectra of the 7 studied classes for the 
calibration dataset in the SWIR range are reported in Fig. 7. Sediment and 
polymer classes show different spectral absorption bands in the SWIR 
range. The results of PCA in terms of score plots, for each rule of the Hi-
PLS-DA, are shown in Fig. 8. 

Reflectance spectra and PCA

Fig. 7. Average raw reflectance spectra of the 7 selected classes of 
materials (i.e.: 6 polymers and sediment matrix) in the SWIR range.

Hierarchical classification model results

   
(a) (b) (c) 

   

(d) (e) (f) 

 

 

Fig. 8. PCA score plots related to the 6 different rules used to 
build the Hi-PLS-DA model.

Materials and methods

The structure of the hierarchical model is shown in Fig. 9, displaying 
the relationships between the different rules. The classification 
results of the validation dataset in terms of false color predicted 
images are shown in Fig. 10 while the classification results of 
validation dataset in terms of statistical parameters in prediction 
phase are shown in Table 1. A satisfactory classification was 
achieved for each class by Hi-PLS-DA model, considering the 
complex spectral scenario, except for some pixels attributed to the 
PA class at the edges of some sediment particles. 
The classification results in terms of predicted images of the real 
marine sediments and the corresponding source images are shown 
in Fig. 11. The classification model successfully identified a total of 
11 real MPs, with PP being the most abundant polymer (36.4%), 
followed by PS (27.3%), PE (18.2%), PVC (18.2%). The abundances 
of polymers (number of particles and number %) constituting the 
MPs identified in the real marine sediment samples by Hi-PLS-DA 
model are shown in Fig. 12.

Fig. 9. Structure of the Hi-PLS-DA model.

 

 

Fig. 10. a) Source images of validation dataset. b) Hyperspectral images of the 
validation dataset showing the classes predicted by Hi-PLS-DA. 

Fig. 12. Abundance (number of particles and 
number %) of polymers identified by the Hi-PLS-
DA model in the real marine sediment samples.

In this work an efficient approach that reduces analysis time and facilitates environmental monitoring efforts was proposed. The results demonstrated 
the efficacy of the developed strategy, combining HSI with machine learning, for the rapid and automated detection of MPs >710 µm in marine 
sediments. Future research will investigate marine sediments of smaller sizes (diameter <710 µm) requiring a different HSI architecture set up, for 
acquisitions with a smaller spatial resolution, and the building of a new classification model. The outcomes of this research are aimed at supporting 
the geo-environmental characterization of highly contaminated coastal sites. 

Class Recall (Pred) Specificity (Pred)
PA 0.99 0.99
PE 0.99 0.99

PET 1.00 0.99
PP 1.00 0.99
PS 1.00 0.99

PVC 0.99 0.99
Sediment 0.99 0.99

Table 1. Recall and specificity values in prediction 
of validation dataset obtained by Hi-PLS-DA model.

Experimental results

Fig. 11. Real marine sediment samples investigated by the Hi-PLS-DA model. Details of 
both source images and predicted hyperspectral images in which the presence of MPs is 

highlighted.
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The analyses carried out by FTIR-ATR, confirmed the 
correct recognition obtained by the developed HSI-based 
strategy.
The results show a wide variability in MPs distribution with 
respect to grain-size classes. Therefore, no correlations 
are highlighted between the presence of MPs and grain-
size classes. 
Concerning the MPs distribution with respect to sampling 
points in the Mar Piccolo basin, the results show a higher 
number of MPs particles in the MP_07 sample (4 
particles), followed by MP_01 (3 particles). In the other 
sampling sites, i.e. MP_02, MP_03, MP_05 and MP_08, 
only 1 MP particle is recognized for each point. On the 
contrary, in the MP_04 and MP_06 sampling points no 
MPs particles are found. 


	Diapositiva 1

