

Deep Eutectic Solvents for Biomass Fractionation (Eucalyptus) using Microwave and Oil Bath: A Comparative Methodology Study

Ana Gálvez-Vergara, Jalel Labidi, Mahsa Mousavi Langari, Amaia Morales ¹ Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Faculty of Engineering Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia, Spain. Corresponding author email: ana.galvez@ehu.eus

Unlocking Efficiency in Biomass Processing

Efficient and sustainable biomass fractionation is crucial for unlocking the potential of renewable resources in various industrial applications¹. Deep eutectic solvents (DES) have emerged as promising candidates for biomass breakdown, offering environmentally friendly alternatives to conventional methods². In this study, the comparative effectiveness of microwave and conventional heating techniques in conjuntion with DES for eucalyptus biomass fractionantion was done. The aim of the investigation is to shed light on the optimal strategies for maximizing extraction yields and product distribution while minimizing environmental impact.

Oil bat

EXPERIMENTAL PROCEDURE

RESULTS AND DISCUSSION

DES SCREENING

Screening was performed with DES at different pH to evaluate the lignin solubility of commercial organosolv and alkaline lignins.

		Sample	Solubility (%)	
	ChCl*:Lastia said	Organosolv lignin	97.03	
Acidia DES		Alkaline lignin	94.76	
ACIUIC DES	ChCl:Formic acid	Organosolv lignin	95.52	
		Alkaline lignin	95.22	
	ChCl:Glycerol	Organosolv lignin	80.00	
Noutral DES		Alkaline lignin	78.30	
Neuliai DES	ChCI:Ethylenglicol	Organosolv lignin	92.79	
		Alkaline lignin	91.21	
	ChCl:Trietanolamine	Alkaline lignin	56.53	
Basic DES	ChCl:Ethanolomina	Organosolv lignin	82.90	
	Choi.Ethanolamine	Alkaline lignin	90.30	

COMPARATIVE STUDY BETWEEN OIL BATH AND MICROWAVE

After fractionation, quantitative acid hydrolysis of the treated biomass was performed. It was determined that the percentage of Klason lignin removed from the pulp is higher with the conventional method, although the percentage of hemicelluloses was slightly higher with the microwave. With these data it can also be concluded that the optimal solidliquid ratio for both methods is 1:15.

The table shows that the DES with the highest solubility of organosolv lignin is ChCl: Lactic Acid, so it has been used to perform the biomass fractionation by the different methods.

*ChCl: Choline chloride

MICROWAVE CONDITIONS

Different conditions of biomass fractionation in the microwave were studied. The variables studied were the solid-liquid ratio as well as the time and temperature of the reaction. As shown in the pictures, the colour of the solution becomes more intense the higher the ratio and the higher the temperature. The optimum temperature was considered to be 70 °C, since at higher temperatures the biomass started to burn.

Biomass (g)	DES (g)	T (°C)	Time (min)
0.1	1	60	5
0.1	1.5	60	5
0.1	1	70	5

0				
0	Glucan	Xylan	Acetyl groups	Klason lignin
OB 1	28.26	46.57	36.10	84.99
OB 2	27.43	46.72	25.31	58.53
M 1	23.89	44.24	52.52	60.84
M 2	23.94	42.48	54.98	54.11

OB 2: Oil bath, 70°C, 60 min S/L ratio 1: 20

M 2: Microwave, 70°C, 5 min, S/L ratio 1: 20

0.1	1.5	70	5
0.1	1	80	5
0.1	1.5	80	5
0.1	1.5	70	10

CONCLUSIONS

REFERENCES

- 1. Rodríguez-Seoane, P., Díaz-Reinoso, B., Moure, A., Dominguez, H. (2020). Potential of Paulownia sp. For biorefinery. Ind. Crop. Prod. 155, 112739.
- 2. Gullón, P., Gullón, B., Dávila, I., Labidi, J., Gonzalez-García, S. (2018). Comparative environmental LifeCycle Assessment of integral revalorization of vine shoots from a biorefinery perspective. Sci. Total Environ.624, 225-240.

ACKNOWLEDGEMENTS

The authors want to acknowledge the financial support from Spanish Ministerio de Ciencia, Innovación y Universidades (PID2021-122937OB-I00, MICIN/AEI/10.13039/ 501100011033)

- ✓ High Lignin Solubility: DES Choline Chloride and Lactic Acid (ChCl: Lactic Acid) is most effective for solubilizing commercial organosolv lignin.
- ✓ Optimal Fractionation Conditions: Best results for eucalyptus biomass fractionation with microwave: 70°C, S/L ratio of 1:15.
- Efficiency of Methods: Microwave: faster, more energy-efficient, ideal for hemicellulose removal. Oil Bath: better for Klason lignin removal but less time and energy efficient.

