

L. Taboada-Ruiz¹, E. Ciurcina¹, P. Álvarez¹, B. Ruiz¹, M. Díaz Somoano¹, M. Granda¹, Z. González¹, U. Sierra², Rebeca

Betancourt Galindo²

¹Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, C/ Francisco Pintado Fe, 26, 33011, Oviedo, Spain

²Centro de Investigación de Química Aplicada (CIQA) Laboratorio Nacional de Materiales Grafénicos, Boulevard Enrique Reyna 140, San José de los Cerritos, C.P. 25294 Saltillo (Coahuila), México

Introduction

• This study the case of Sargassum sp., a brown macroalgae with unusual bloom, which can cause severe environmental problems, particularly in the Caribbean.

• In an effort to address the Sargassum problem this work focused on their utilization as raw material for bio-oil, bio-char and gas generation.

• The pyrolytic conversion of biomass into bio-fuel is one of the most promising alternatives to fossil fuels for energy production. It also addresses

11[®] INTERNATIONAL CONFERENCE

ON SUSTAINABLE SOLID WASTE MANAGEMENT

RHODES 2024

Results & Discussion

Table 1: Atomic composition of the Sargassum sp.-based samples S1

Element	S1	
С	62.1	
Ο	25.2	
Na	2.3	
CI	6.0	
S	0.8	
K	3.6	
Ca		

Pyrolysis yield of Bio-char, bio-oil and gas

GAS COMPOSITION

Table 2: Chemical characterization of Bio-char

SAMPLEC (%)H (%)N (%)S (%)O (%)SCP500-S55.02.41.12.439.1

• Pyrolysis favoured the formation of Gas (yield of 77%).

- Chemical characterization of the bio-char showed a carbon material with high sulphur content (2,4%), it could not be suitable for combustion processes.
 Gas obtained at 500°C presented a high CO₂ content (>60%vol.) and low contents of fuel gases (CH⁴, H², ethane, etc), so, its calorific value is low.
- Conventional pyrolysis bio-oil had a dominant monoaromatic hydrocarbons nature

Acknowledgements

Conclusions

The authors thank the Spanish Ministry of Science and innovation (MICINN) (PID2022-137208NB-I00) and Spanish council for research (ICOOP program, COOPB22006) for their financial support