Pilot-scale mineralization of flue gas desulfurization gypsum in waste alkali medium

Yuliang Cao¹, Tingfeng Liu¹, Wenyi Tan^{1,2}, Guodong Chen¹

¹Nanjing Institute of Technology, Nanjing, China ²Xuzhou University of Technology, Xuzhou, China

Presenting author email: 313198906@qq.com

1. Introduction

• Principle of CO₂ mineralization in industrial solid waste

$Ca^{2+}+H_2CO_3 \rightarrow CaCO_3+2H^+$	(1)
$H_2CO_3 \rightarrow HCO_3^- + H^+$	(2)
$HCO_3^- \rightarrow CO_3^{2-} + H^+$	(3)
$Ca^{2+} HCO_3^{-} + H^+ \rightarrow CaCO_3 + 2H^+$	(4)
$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3$	(5)

• Materials

-Solid mineralized feedstock: desulfurization gypsum (FGDG) produced by power plants (CaSO₄ accounts for 97% of the dried FGDG).

-Liquid reaction medium: NaOH effluent.

• Mineralization reactor

Fig.1 Structure of a pilot-scale mineralization reactor: 1- gas tubes, 2- heating coils, 3-valve, 4pH meter, 5- liquid pump, 6- gas flow meter, 7-gas pressure reducing valves, 8- CO₂ cylinders, 9- insulation, 10- reclaimer tube

2.Result and discussion

Fig.3 effect of reaction parameters on product particle size; a: initial pH of NaOH effluent, b: CO₂ flow rate, c: reaction temperature, d: liquid level

• Characterization and analysis of product

- The plate-like CaSO $_4$ particles are transformed into CaCO $_3$ aggregate particles after 60 minutes of mineralization reaction.

- The product obtained after carbonization is composed of amorphous nano-sized particles with an aggregate structure.

Effect of reaction parameters on CO₂ mineralization efficiency

The CO₂ mineralization efficiency reaches its maximum and the mineralization reaction tends to stabilize when the mineralization reaction is carried out for 6 min.
The highest CO₂ mineralization efficiency can reach 92% under optimal conditions.

Fig.2 effect of reaction parameters on the mineralization efficiency; a: initial pH of NaOH effluent, b: CO₂ flow rate, c: reaction temperature, d: liquid level

- Effect of reaction parameters on product particle size
- The minimum average particle size of the reaction product reaches $4.5 \mu m.$
- The increase in gas flow rate and the decrease in liquid level height cause the particle size distribution curve to shift to the right.

Fig.4 a: The SEM images of raw FGDG; b-c: The SEM images of FGDG mineralization product; d: EDS mapping of FGDG mineralization product

3. Conclusion

• The increase in initial pH of NaOH effluent, liquid level and the decrease in CO₂ flow rate are beneficial for achieving high CO₂ mineralization efficiency. As the temperature increases, the CO₂ mineralization efficiency first increases and then decreases.

• The increase in liquid level and the decrease in CO₂ flow rate are beneficial for obtaining small particle products. The cost of product recovery is relatively high. The initial pH of NaOH effluent and reaction temperature do not have a significant impact on the particle size distribution of the products.

Nanjing Institute of Technology