## Biodegradation of diesel D2 by indigenous *Rhodococcus sp.* recovered from petroleum contaminated soil

Jelena Milić<sup>1</sup>, Tatjana Šolević Knudsen<sup>1</sup>, Ivan Kojić<sup>2</sup>, Jelena Avdalović<sup>1</sup>, Mila Ilić<sup>1</sup>, Miroslav M. Vrvić<sup>3</sup>

<sup>1</sup> University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia (jelenamilic@chem.bg.ac.rs)
<sup>2</sup>Innovative Centre of the Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
<sup>3</sup>BREM GROUP Ltd, Str. Oslobodjenja 39b, 11090 Belgrade, Serbia

> Keywords: biodegradation, diesel D2, Rhodococcus Presenting author email: jelenamilic@chem.bg.ac.rs

Diesel has served as a primary source of fuel in transportation, as well as in small-scale energy generation for backup or emergency power supply, for decades (de Witt *et al*, 2021). Despite the decreasing production of fossil fuels due to global energy transitions, environmental contamination by petroleum derivatives can persist for extended periods (Marigómez, 2014). Consequently, there remains a high demand for improved technologies to clean up contaminated areas [Ossai *et al*, 2020].

This paper presents a GC/MS study on the biodegradation of hydrocarbon fractions of diesel D2, utilizing indigenous *Rhodocuccus sp.* isolated from petroleum-contaminated soil. GC-MS analysis was employed to determine the abundances of specific compounds such as n-alkanes, isoprenoids, sesquiterpanes, hopanes, steranes, and aromatic compounds (including trimethyl-naphthalenes, phenanthrene, anthracene, methylphenanthrenes, dibenzothiophene, and methyl-dibenzothiophenes). After 30 days of biodegradation of diesel D2, significant degradation was achieved, with complete degradation of sesquiterpanes and a reduction in the number of n-alkanes lower than C21. Pristane and phytane were almost completely degraded. Additionally, dimethyl-dibenzothiophenes were nearly completely degraded and removed from the system (Figure 1).

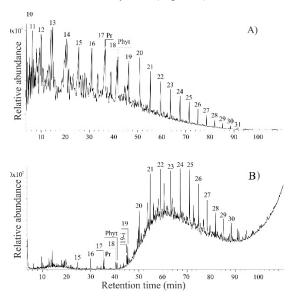



Figure 1. Total ion chromatograms (TIC) of: A) starting diesel D2 oil sample; B) of diesel D2 oil samples after degradation by *Rhodococcus sp.* after 30 days

These results highlight the potential application value of these microbial strains in the degradation of higher substituted tricyclic aromatic compounds in environmental oil pollution cleanup.

## Acknowledgements

This work was supported by Ministry of Education, Science and Technological Development of Republic of Serbia (Grant No: 451-03-47/2023-01/200026).

## References

de Witt M, Stefánsson H, Valfells Á, Valfells A, Nymand Larsen J. Energy resources and electricity generation in Arctic areas. Renewable Energy. 2021;169:144-156. ISSN 0960-1481. <u>https://doi.org/10.1016/j.renene.2021.01.025</u>

Marigómez I. Oil, Crude. In: Wexler P, editor. Encyclopedia of Toxicology. 3rd ed. Academic Press; 2014. p. 663-669. ISBN: 9780123864550. Available from: https://doi.org/10.1016/B978-0-12-386454-3.00524-8.

Ossai IC, Ahmed A, Hassan A, Shahul Hamid F, et al. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ Technol Innov. 2020;17:100526. ISSN 2352-1864. https://doi.org/10.1016/j.eti.2019.100526